ON THE POWERS OF A REAL NUMBER REDUCED MODULO ONE

BY

FRED SUPNICK, H. J. COHEN AND J. F. KESTON

1. Introduction. Let us consider the sequence

(1.1)
$$\alpha - [\alpha], \quad \alpha^2 - [\alpha^2], \quad \alpha^3 - [\alpha^3], \cdot \cdot \cdot,$$

where α is a real number greater than one ([x] denotes the greatest integer(1) less than or equal to x). It has been shown by Koksma (cf. [1]) that the terms of (1.1) distribute uniformly on the interval (0, 1) for almost all $\alpha > 1$. We note, however, that the elements of (1.1) need not be distinct (e.g. α integral, or $\alpha = 2^{1/2}$).

Consider all the values $v_1, v_2, v_3, \cdots (v_i \neq v_j \text{ for } i \neq j)$ assumed at least once by the terms of (1.1). Let us denote the set of all positive integers i such that $\alpha^i - [\alpha^i] = v_1$ by C_1 , the set of all positive integers i such that $\alpha^i - [\alpha^i] = v_2$ by C_2 , etc. That is, the set $g: \{1, 2, \cdots, n, \cdots \}$ partitions into sets C_1, C_2, \cdots :

$$(1.2) g = C_1 + C_2 + C_3 + \cdots$$

with the property that $j, k \in C$, if and only if

$$\alpha^i - \left[\alpha^i\right] = \alpha^k - \left[\alpha^k\right],$$

i.e. if and only if

$$\alpha^k - \alpha^j = r,$$

r integral. The set $\{C_1, C_2, C_3, \cdots\}$ will be denoted by \mathfrak{I}/α , and will be called the decomposition of \mathfrak{I} induced by α .

In this paper we study the decomposition g/α for $\alpha > 1$.

The elements C_r , of g/α will be called *exponent classes*. If an exponent class contains only one element of g, it will be called *unitary*; if each C_r is unitary, then g/α will be referred to as a *unitary decomposition*.

 g/α is unitary if and only if the equation (1.3) has no solutions in positive integers j, k, r. Thus if α is not an algebraic integer, the decomposition is unitary (cf. [2]). Therefore we consider only *integral algebraic* α .

If α is a rational integer, the problem is trivial. Therefore we consider only *irrational integral algebraic* α .

Let the minimal polynomial of α be

Presented to the Society, October 26, 1957; received by the editors February 25, 1959.

⁽¹⁾ The term "integer" not preceded by "algebraic" will mean "rational integer."

$$M_{\alpha}(x) = x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \cdots + a_{n-1}x + a_{n}$$

where the a_i are integers. If a_n is positive, $M_{\alpha}(x)$ has at least one positive zero other than α and hence $M_{\alpha}(x)$ cannot divide any polynomial of the form $x^k - x^j - r$, where j, k, r are positive integers with j less than k (since any polynomial of this form has only one positive zero). Thus, if a_n is positive, α cannot satisfy any relation of the form (1.3) and so the decomposition is unitary. Therefore we consider only irrational integral algebraic α whose minimal polynomial has a negative constant term.

We let $L(\alpha)$ denote the number of nonzero terms in $M_{\alpha}(x)$.

If an exponent class contains exactly two elements, it will be called binary.

Summary of main results. For $L(\alpha) = 2$, 3 the complete decompositions g/α are obtained (cf. Theorems 1 and 7, §2). For $L(\alpha) \ge 3$, we prove (i) that each C_r is either unitary or binary, and (ii) that at most a finite number of the C_r are binary (cf. Theorems 2 and 3, §2). Sufficient conditions for unitary decomposition are obtained in Corollary 5.1 and Theorems 4, 5 and 6 (cf. §2).

2. Statement of results. In the following theorems α is understood to be a real irrational algebraic integer greater than unity whose minimal polynomial has a negative constant term.

THEOREM 1. Suppose $L(\alpha) = 2$; that is, $M_{\alpha}(x) = x^n - K$, where K > 0. Then the set $\{n, 2n, 3n, \cdots\}$ comprises a single exponent class C_{r_0} of g/α , while each positive integer not belonging to C_{r_0} forms a unitary exponent class (cf. §3).

THEOREM 2. If $L(\alpha) \ge 3$, then no C, can contain more than two elements (cf. §4).

LEMMA 5.1(2). Let $L(\alpha) \ge 3$, and suppose that (j, k) is a binary exponent class of β/α , where j < k. Then,

$$(2.1) 0 < \frac{\alpha^n - |a_n|}{\alpha^n} \le \frac{1}{\alpha^{k-i}},$$

where a_n denotes the (negative) constant term of $M_{\alpha}(x)$ (cf. §5).

COROLLARY 5.1. Let $L(\alpha) \ge 3$, and suppose that $a_i \ge 0$ in $M_{\alpha}(x)$, for $1 \le i \le n-1$. Then g/α is unitary.

Corollary 5.2. Let $L(\alpha) \ge 3$, and suppose that g/α is nonunitary. Then,

$$(2.2) \alpha^{n-1}(\alpha-1) \leq |a_n| < \alpha^n.$$

COROLLARY 5.3. Let $L(\alpha) \ge 3$, and suppose that \mathfrak{I}/α is nonunitary. Let the roots of $M_{\alpha}(x)$ be denoted by z_1, z_2, \cdots, z_n . Then,

⁽²⁾ Integral parts of lemma-numbers indicate sections containing proofs; corollary-numbers have same integral parts as the theorem or lemma to which they are attached.

$$(2.3) \alpha - 1 \leq |z_i| \leq \alpha (i = 1, 2, \dots, n).$$

THEOREM 3. For any g/α , at most a finite number of the C_{ν} are binary (cf. §6).

We note that Theorems 1, 2 and 3 jointly imply the following statement: Let α be a real number greater than one. Then, the equation $\alpha^z - \alpha^y = z$ has at most a finite number of solutions in positive integers x, y, z, except in the case when $\alpha = K^{1/n}$, where n, K are positive integers (3).

Theorems 4, 5 and 6 state sufficient conditions for unitary decomposition.

THEOREM 4. Suppose

$$(2.4) M_{\alpha}(x) = x^{n} - b_{1}x^{n-1} - b_{2}x^{n-2} - \cdots - b_{n-1}x - b_{n},$$

where each $b_i \ge 0$, and $\sum_{i=1}^{n-1} b_i > 1$. Then g/α is unitary (cf. §7).

COROLLARY 4.1. Let $M_{\alpha}(x)$ be of form (2.4) where each $b_i \ge 0$. Then, if $L(\alpha) \ge 4$, g/α is unitary.

THEOREM 5. Suppose $M_{\alpha}(x)$ is of the form

$$M_{\alpha}(x) = x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \cdots + a_{n-1}x - 1,$$

where $\sum_{i=1}^{n-1} a_i \neq -1$. Then g/α is unitary (cf. §8).

THEOREM 6. If $M_{\alpha}(x)$ has two real roots of the same sign, then θ/α is unitary (cf. §9).

Theorem 7 states the complete decomposition for the case $L(\alpha) = 3$.

THEOREM 7. Let $M_{\alpha}(x) = x^{n} + ax^{n-r} - K$, $(a \neq 0, K > 0, 0 < r < n)$.

- (a) If $a \neq -1$, then g/α is unitary.
- (b) If a = -1, then the integers (n-r, n) form a binary class, by definition. There will be no other binary classes, unless $M_{\alpha}(x)$ is of the special form:

$$(2.5) M_{\alpha}(x) = x^{3t} - x^{t} - 1.$$

In this exceptional case, each of the pairs (t, 3t) and (4t, 5t) forms a binary class, and there are no others $(cf. \S 10)$.

3. Proof of Theorem 1. We assume n>1. The integers $(n, 2n, 3n, \cdots)$ clearly belong to the same exponent class C_{ν_0} . If m=an+b, where $a\geq 0$ and 0< b< n, then m cannot belong to C_{ν_0} . Otherwise, we would have

$$\alpha^{an+b} - \alpha^n = t,$$

where t is integral; but this becomes

^(*) A theorem of A. Gelfond (cf. [3]) contains, as a special case, an analogous result for the closely related equation $\alpha^* - \alpha^* = \delta^*$, where α , δ are given real, algebraic numbers.

$$K^a\alpha^b-K=t,$$

which is of lower degree in α than the degree n of $M_{\alpha}(x)$. Thus the integers $(n, 2n, 3n, \cdots)$ comprise the *complete* class C_{r_0} .

Suppose

$$r = a_1 n + b_1, \quad s = a_2 n + b_2,$$

where $a_i \ge 0$ and $0 < b_i < n$, (i=1, 2), and assume that r and s were in the same class. We would then have

$$\alpha^{a_1n+b_1} - \alpha^{a_2n+b_2} = t,$$

or,

$$K^{a_1}\alpha^{b_1} - K^{a_2}\alpha^{b_2} - t = 0,$$

which, as before, is impossible unless r equals s.

4. Proof of Theorem 2. We first prove

LEMMA 4.1. If $M_{\alpha}(x)$ has a root β such that $|\beta| < 1$, then no exponent class in β/α can contain more than two elements.

Proof. Suppose the integers j, k belong to the same exponent class, where j < k. That is,

$$\alpha^k - \alpha^j = r,$$

where r is a positive integer. Then, since $M_{\alpha}(x)$ must divide $x^{k}-x^{j}-r$,

$$\beta^k - \beta^j = r.$$

Therefore

$$r \leq |\beta|^k + |\beta|^i < 2.$$

Hence r=1. Thus, if some exponent class contained three elements u < v < w, we would then have

$$\alpha^w - \alpha^u = 1,$$

and

$$\alpha^{w} - \alpha^{v} = 1$$
.

But these relations imply $\alpha^u = \alpha^v$, which is impossible.

Proof of Theorem 2. We now assume, in view of Lemma 4.1, that no root of $M_{\alpha}(x)$ has absolute value less than unity.

If the theorem were false, there would exist three positive integers j < k < m, such that

$$(4.1) \alpha^k - \alpha^j = r,$$

and

$$\alpha^m - \alpha^j = s,$$

where r, s are positive integers, r < s. Let us write the n roots z_1, z_2, \dots, z_n of $M_{\alpha}(x)$ in the form

$$z_{\nu} = \rho_{\nu}e^{i\theta_{\nu}}, \qquad (\nu = 1, 2, \cdots, n),$$

where each $\rho_{r} \ge 1$.

Now from (4.1),

$$(4.4) x^k - x^j - r = M_{\alpha}(x) \cdot P(x),$$

where P(x) is a polynomial with integral coefficients. We note that if $|x| > \alpha$, then

$$(4.5) |x^k - x^j| \ge |x|^k - |x|^j > \alpha^k - \alpha^j = r;$$

thus no zero of $x^k - x^j - r$ has absolute value greater than α . Since the left member of (4.4) has each z_r among its roots, then

$$(4.6) 1 \leq \rho_{\nu} \leq \alpha, (\nu = 1, 2, \cdots, n).$$

We will now prove that each $\rho_{\nu} = \alpha$, $(\nu = 1, 2, \dots, n)$. Substituting (4.3) into (4.4), we have

$$r = \rho_{\nu}^{k} \cos k\theta_{\nu} - \rho_{\nu}^{j} \cos j\theta_{\nu},$$

$$0 = \rho_{\nu}^{k} \sin k\theta_{\nu} - \rho_{\nu}^{j} \sin j\theta_{\nu}.$$

Transposing the second term of each right member to the left, squaring each equation, and adding, we obtain

(4.7)
$$r^{2} + 2r\rho_{\nu}^{j} \cos j\theta_{\nu} + \rho_{\nu}^{2j} = \rho_{\nu}^{2k}.$$

Similarly, from (4.2),

(4.8)
$$s^{2} + 2s\rho_{\nu}^{j} \cos j\theta_{\nu} + \rho_{\nu}^{2j} = \rho_{\nu}^{2m}.$$

Eliminating θ_r between (4.7) and (4.8),

$$r^2s - s^2r + s\rho_r^{2j} - r\rho_r^{2j} = s\rho_r^{2k} - r\rho_r^{2m}$$
.

Thus, defining the polynomial

$$(4.9) G(x) = rx^{2m} - sx^{2k} + (s-r)x^{2i} - rs(s-r),$$

we have

(4.10)
$$G(\rho_{\nu}) = 0, \qquad (\nu = 1, 2, \cdots, n).$$

From (4.9), using (4.1) and (4.2), we obtain

$$G(0) = G(1) = G(\alpha^{1/2}) = -rs(s-r) < 0.$$

Therefore, there exist x_0 , x_1 , $0 < x_0 < 1$, $1 < x_1 < \alpha^{1/2}$, such that

$$G'(x_0) = G'(x_1) = 0.$$

But, since G'(x) is a trinomial, it has at most two positive roots, which must then be x_0 , x_1 . Moreover, since the leading coefficient of G'(x) is positive, we have

$$G'(x) > 0$$
 for $x > x_1$.

That is, G(x) is strictly increasing for $x > x_1$. But $G(\alpha) = 0$, and $x_1 < \alpha$. Therefore, G(x) < 0 for $x_1 \le x < \alpha$. We now show that G(x) < 0 for $1 < x < x_1$. Assume that $G(x_2) \ge 0$, where $1 < x_2 < x_1$. Since G(1) and $G(x_1)$ are each negative, this would imply that G'(x) has a root between 1 and x_1 , which is impossible. We thus have

$$(4.11) G(x) < 0 \text{for } 1 \le x < \alpha.$$

Therefore, from (4.11), (4.10), and (4.6), we conclude

$$\rho_{\nu} = \alpha, \qquad (\nu = 1, 2, \cdots, n).$$

Now, taking the product of the absolute values of the roots (4.3) of $M_{\alpha}(x)$, we obtain

$$\alpha^n = |a_n|,$$

which contradicts the assumption that $L(\alpha) \ge 3$. This completes the proof of Theorem 2.

5. Proof of Lemma 5.1. Let $\alpha^k - \alpha^j = r$. Then

$$(5.1) x^k - x^j - r = M_{\alpha}(x) \cdot P(x),$$

where P(x) is a polynomial of degree (k-n), having integral coefficients. Denote the roots of $M_{\alpha}(x)$ by z_1, z_2, \dots, z_n , and those of P(x) by $\omega_1, \omega_2, \dots, \omega_{k-n}$. Since the left member of (5.1) has each z_i among its roots and α as its unique positive root, we then have (cf. (4.5))

$$|z_i| \leq \alpha, \qquad (i=1,2,\cdots,n);$$

similarly,

$$|\omega_i| \leq \alpha, \qquad (i=1, 2, \cdots, k-n).$$

Therefore, by (5.2), we get

$$|a_n| = |z_1| \cdot |z_2| \cdot \cdot \cdot |z_n| \leq \alpha^n.$$

The right equality sign in (5.4) cannot hold, since $L(\alpha) \ge 3$. Thus, the left inequality of (2.1) holds.

From (5.1),

$$\alpha^{k} - \alpha^{j} = r = |z_{1}| \cdot |z_{2}| \cdot \cdot \cdot |z_{n}| \cdot |\omega_{1}| \cdot |\omega_{1}| \cdot \cdot \cdot |\omega_{k-n}|,$$

and therefore, by (5.3),

$$(5.5) \alpha^k - \alpha^j \leq |a_n| \alpha^{k-n}.$$

The right inequality of (2.1) is simply a rearrangement of (5.5). This completes the proof of Lemma 5.1.

REMARK 1. We show that the equality sign in (2.1) holds if and only if

$$M_{\alpha}(x) = x^k - x^j - |a_k|.$$

Sufficiency. Assume that $M_{\alpha}(x) = x^{k} - x^{j} - |a_{k}|$. Then

$$\frac{\alpha^n - |a_n|}{\alpha^n} = \frac{\alpha^k - |a_k|}{\alpha^k} = \frac{\alpha^i}{\alpha^k} = \frac{1}{\alpha^{k-i}}.$$

Necessity. Assume that

$$\frac{\alpha^n - |a_n|}{\alpha^n} = \frac{1}{\alpha^{k-j}}.$$

Since (j, k) is an exponent class, $\alpha^k - \alpha^j = r$ (a positive integer), where $k \ge n$. Now,

(5.6)
$$\frac{\alpha^n - |a_n|}{\alpha^n} = \frac{\alpha^j}{\alpha^k} = \frac{\alpha^k - r}{\alpha^k}.$$

Equating the first and third expressions in (5.6), we obtain

If $k \neq n$, $\alpha^{k-n} = r/|a_n|$, contradicting the hypothesis that $L(\alpha) \geq 3$ (cf. §6' Lemma 6.1). Thus n = k, and from (5.7), $r = |a_n|$. Therefore $M_{\alpha}(x) = x^k - x^i - |a_k|$.

Proof of Corollary 5.1. If g/α were not unitary, we would have

$$0 < \alpha^{n} - |a_{n}| = -a_{1}\alpha^{n-1} - a_{2}\alpha^{n-2} - \cdots - a_{n-1}\alpha < 0,$$

which is impossible.

Proof of Corollary 5.2. We need prove only the left inequality. Thus, if (j, k) is a binary class, with j < k,

$$\alpha^{n-1}(\alpha-1) \leq \alpha^n - \alpha^{n-(k-j)} \leq |a_n|,$$

by (2.1).

Proof of Corollary 5.3. The right inequality is the same as (5.2). To prove the left inequality, we have

$$\alpha^{n-1}(\alpha - 1) \leq |a_n|$$

$$= |z_1| \cdot |z_2| \cdot \cdot \cdot |z_n|$$

$$\leq \alpha^{n-1} |z_i|.$$

Dividing by α^{n-1} , we obtain the desired result.

REMARK 2. The following example shows that the left equality sign in (2.3) may hold for some of the conjugates of certain α :

$$M_a(x) = x^2 - x - K$$

(K>0) has α and $1-\alpha$ $(\alpha>1)$ as roots.

6. Proof of Theorem 3. We first prove

LEMMA 6.1. If there exists a positive integer t such that α^t is rational, then $L(\alpha) = 2$.

Proof. Let h denote the *smallest* positive integer such that α^h is rational; let $\alpha^h = v$. Since α is an algebraic integer, v must be integral. We will show that $M_{\alpha}(x) = x^h - v$, by proving that the binomial $x^h - v$ is irreducible.

If $x^h - v$ were reducible, then $v = b^c$ (cf. [4]), where b, c are positive integers, c > 1, and c divides h. But, letting h = rc,

$$v = \alpha^h = \alpha^{rc} = b^c.$$

This implies $\alpha^r = b$, contradicting the definition of h.

LEMMA 6.2. Let $L(\alpha) \ge 3$. Suppose that each of the pairs (j, k), (j', k') forms a binary class of $3/\alpha$ (j < k, j' < k'). Then,

$$k-j\neq k'-j'$$
.

Proof. Assume that k-j=k'-j'. Take k < k', and let

$$t=k'-k=j'-j.$$

Then,

$$\alpha^{i}(\alpha^{k}-\alpha^{j})=\alpha^{k'}-\alpha^{j'},$$

or,

(6.1)
$$\alpha^{t} = \frac{\alpha^{k'} - \alpha^{j'}}{\alpha^{k} - \alpha^{j}} = \frac{u}{v},$$

where u, v are positive integers. Consequently $L(\alpha) = 2$, by Lemma 6.1, contradicting the hypothesis.

Proof of Theorem 3. We may assume that $L(\alpha) \ge 3$, in view of Theorem 1. Let (j, k) be any binary class of g/α (j < k). The right inequality of (2.1) implies that

$$(6.2) k-j \leq n - \log_{\alpha} (\alpha^n - |a_n|).$$

Denoting by N the greatest integer less than or equal to the right member of (6.2), we thus have

$$(6.3) k-j \leq N.$$

Thus, by Lemma 6.2, there are at most N binary classes.

REMARK 1. If $L(\alpha) \ge 3$, then \mathfrak{I}/α^p is unitary for each positive integer p satisfying:

$$p > [n - \log_{\alpha} (\alpha^n - |a_n|)] = N.$$

Proof. If this statement were false, there would exist a positive integer $p_0 > N$, and positive integers r, s (r < s) such that

$$(\alpha^{p_0})^s - (\alpha^{p_0})^r$$

is integral. Thus the integers (p_0r, p_0s) form a binary class for s/α . But,

$$p_0s - p_0r = p_0(s - r) > N$$

contradicting (6.3).

REMARK 2. If g/α is unitary, then g/α^p is also unitary for all integers $p \ge 1$.

7. Proof of Theorem 4. Let C_0 be any exponent class of g/α , and let m denote its smallest element. We show that no integer larger than m can belong to C_0 .

Let the canonical form of α^m (i.e. α^m expressed in terms of the basis $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ with integral coefficients) be given by

(7.1)
$$\alpha^m = c_1 \alpha^{n-1} + c_2 \alpha^{n-2} + \cdots + c_{n-1} \alpha + c_n,$$

where each $c_i \ge 0$, since each $b_i \ge 0$. Now, for each positive integer t, we shall denote by S_t the sum of all the coefficients in the canonical form of α^t , excluding the "constant" (i.e. α -free) term, if any. Since (7.1) yields

$$\alpha^{m+1} = (c_1b_1 + c_2)\alpha^{n-1} + (c_1b_2 + c_3)\alpha^{n-2} + \cdots + (c_1b_{n-1} + c_n)\alpha + c_1b_n,$$

we obtain

(7.2)
$$S_{m+1} = S_m + c_n + c_1 \left(\left(\sum_{i=1}^{n-1} b_i \right) - 1 \right).$$

Case I. Assume that at least one of the integers c_1 , c_n is positive. Then, from (7.2), $S_{m+1} > S_m$. Moreover, since S_t is clearly a nondecreasing function of t, we conclude that $S_t > S_m$ for each t > m. Thus, if t > m, α^t cannot have the same canonical form (excluding the "constant" term) as α^m . Therefore, it is impossible that $\alpha^t = \alpha^m + K$, where K is a positive integer.

CASE II. $c_1 = c_n = 0$. Let c_q be the first nonzero coefficient in (7.1). We then have

(7.3)
$$\alpha^{m} = c_{q}\alpha^{n-q} + c_{q+1}\alpha^{n-q-1} + \cdots + c_{n-1}\alpha,$$

$$\alpha^{m+1} = c_{q}\alpha^{n-q+1} + c_{q+1}\alpha^{n-q} + \cdots + c_{n-1}\alpha^{2},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\alpha^{m+q-1} = c_{q}\alpha^{n-1} + c_{q+1}\alpha^{n-2} + \cdots + c_{n-1}\alpha^{q}.$$

Since the above canonical forms are of ascending degrees, it follows that none of the integers

$$m+1, m+2, \cdots, m+q-1$$

belongs to C_0 . Now, just as we obtained (7.2), we can write:

$$S_{m+q} = S_{m+q-1} + c_q \left(\left(\sum_{i=1}^{n-1} b_i \right) - 1 \right).$$

But, $S_{m+q-1} = S_m$, from the first and last equations of (7.3). Thus, $S_{m+q} > S_m$, since $c_q > 0$. Hence, as before, no integer larger than m can belong to C_0 .

8. Proof of Theorem 5. Assume that there exists a binary class (j, k); that is,

$$(8.1) \alpha^k - \alpha^j = r,$$

where r is a positive integer. But, since the constant term of $M_{\alpha}(x)$ is -1, the product of its roots is ± 1 . Hence, since $\alpha > 1$, it follows that $M_{\alpha}(x)$ must have a root β such that $|\beta| < 1$. We then conclude, as in the proof of Lemma 4.1, that r = 1. From (8.1),

$$(8.2) x^k - x^j - 1 = M_{\alpha}(x) \cdot P(x),$$

where P(x) is a polynomial with integral coefficients. Letting x=1,

$$P(1) = -\frac{1}{M_{\alpha}(1)}.$$

Therefore, since P(1) must be integral, it follows that $M_{\alpha}(1) = \pm 1$. Now, $M_{\alpha}(1)$ cannot be positive; otherwise $M_{\alpha}(x)$ would have a root between 0 and 1, whereas the left member of (8.2) has only one positive root, namely α .

We thus conclude that

$$\sum_{i=1}^{n-1} a_i = M_{\alpha}(1) = -1,$$

which contradicts the hypothesis. This completes the proof.

- 9. Proof of Theorem 6. It is sufficient to show that $R(x) = x^k x^j r$ cannot have two zeros of the same sign for any pair of values of j, k with 0 < j < k. Since R(x) has one variation in sign, R(x) has exactly one positive zero. If k is even, R(-x) has one variation in sign and therefore R(x) has exactly one negative zero. If k is odd, R(x) < -r < 0 when x < -1 and $R(x) < -x^j r < 0$ when -1 < x < 0, so that R(x) has no negative zeros in this case.
- 10. Proof of Theorem 7. If a < -1, it follows from Theorem 4 that g/α is unitary. If a > 0, it follows from Corollary 5.1 that g/α is unitary. This proves part (a).

Proof of Theorem 7(b). In this case, we are concerned with a minimal polynomial of the form

$$(10.1) M_{\alpha}(x) = x^{n} - x^{n-r} - K,$$

where K>0. Thus, the integers n-r and n form a binary class, which we shall refer to as the *trivial* binary class. When (10.1) is of the special form

$$(10.2) M_{\alpha}(x) = x^{3t} - x^t - 1,$$

the existence of the nontrivial binary class (4t, 5t) follows from the identity

$$(10.3) (x^{5t} - x^{4t} - 1) = (x^{3t} - x^t - 1)(x^{2t} - x^t + 1).$$

In order to complete the proof of Theorem 7(b), we must show that the class (4t, 5t), associated with the minimal polynomial (10.2), is the *only case* of a nontrivial binary class arising from a minimal polynomial of the form (10.1).

We begin by establishing

LEMMA 10.1. Suppose that $M_{\alpha}(x)$ is of the form (10.1). Then, the positive integer p will be the smaller element of a nontrivial binary class if and only if the canonical form of α^p is of type

$$\alpha^p = c\alpha^{n-q} + c\alpha^{n-2q} + c\alpha^{n-3q} + \cdots + c\alpha^{n-mq},$$

where c>0, mq=r, m>1. Moreover, the larger element of this binary class must be (p+q).

Proof. The sufficiency is immediate, since (10.4) implies

$$\alpha^{p+q} = c\alpha^{n-q} + c\alpha^{n-2q} + \cdots + c\alpha^{n-mq} + cK$$

= $\alpha^p + cK$.

For the necessity, we assume that p is the smaller element of a nontrivial binary class C_0 , and denote the canonical form of α^p by

$$(10.5) \alpha^p = c_q \alpha^{n-q} + c_{q+1} \alpha^{n-q-1} + c_{q+2} \alpha^{n-q-2} + \cdots + c_{n-1} \alpha + c_n,$$

all $c_i \ge 0$, $c_q > 0$, $q \ge 1$. We note that $c_n = 0$; otherwise, as in the proof of Theorem 4, Case I, we would have: $S_t > S_p$, for each t > p, so that p could not be the smaller element of a binary class.

From (10.5), we see that α^{p+1} , α^{p+2} , \cdots , α^{p+q-1} will each have canonical forms of degree *higher* than (n-q), so that none of the integers p+1, p+2, \cdots , p+q-1 can belong to C_0 . Moreover, since α^{p+q} will contain the "constant" term $c_q K$ in its canonical form, no integer larger than (p+q) can belong to C_0 (cf. Theorem 4, Case I). Thus, the second element of C_0 must be (p+q).

By the "pure-canonical" form of α^w (w integral), we shall mean the canonical form of α^w with all zero terms omitted. We note that the pure-canonical form of α^w ($w \ge 0$) has all positive coefficients if $M_{\alpha}(x)$ is of the form (10.1).

We next show that each exponent in the pure-canonical form of α^p must

be of form (n-aq), where "a" is a positive integer. Assume that this is not the case, and let u be the *largest* exponent which is *not* of this form. Suppose that u falls between (n-bq) and (n-(b+1)q), where b is a positive integer. But then, α^{p+q} would contain the exponent (u+q) in its pure-canonical form, while α^p does not, which is impossible.

Moreover, since α^{p+q} contains the exponent (n-r) in its pure-canonical form, so must α^p ; hence, r = mq, $m \ge 1$. Thus (10.5) becomes

$$(10.6) \quad \alpha^{p} = c_{q}\alpha^{n-q} + c_{2q}\alpha^{n-2q} + \cdots + c_{mq}\alpha^{n-mq} + \cdots + c_{vq}\alpha^{n-vq},$$

where $v \ge m$, $c_{mq} > 0$, $c_{vq} > 0$.

We next see that v=m. For, if v>m, α^{p+q} would not contain the exponent (n-vq) in its pure-canonical form. Thus, (10.6) becomes

(10.7)
$$\alpha^{p} = c_{q}\alpha^{n-q} + c_{2q}\alpha^{n-2q} + \cdots + c_{mq}\alpha^{n-mq},$$

where mq = r. We can now see that m > 1; otherwise, we would have

$$\alpha^p = c_q \alpha^{n-r}$$
, or $\alpha^{p-n+r} = c_q$,

contradicting Lemma 6.1.

Finally, from (10.7) we obtain

$$(10.8) \quad \alpha^{p+q} = c_{2\sigma}\alpha^{n-q} + C_{3\sigma}\alpha^{n-2q} + \cdots + c_{m\sigma}\alpha^{n-(m-1)q} + c_{\sigma}\alpha^{n-mq} + c_{\sigma}K.$$

Comparing (10.8) and (10.7), we conclude that

$$c_q = c_{2q} = \cdot \cdot \cdot = c_{mq},$$

completing the proof of Lemma 10.1.

It will now be shown that if there exists an integer p such that α^p is of form (10.4), then the minimal polynomial (10.1) must be of form (10.2), where p=4t, q=t. Toward this end, we first establish:

LEMMA 10.2. If there exists an integer p such that α^p is of form (10.4), then K=1 in (10.1), and c=1 in (10.4).

Proof. Dividing (10.4) by α^{n-mq} , we have

(10.9)
$$\alpha^{p-n+mq} = c[\alpha^{(m-1)q} + \alpha^{(m-2)q} + \cdots + \alpha^q + 1].$$

Therefore,

(10.10)
$$x^{p-n+mq} - c[x^{(m-1)q} + x^{(m-2)q} + \cdots + x^q + 1]$$

$$= (x^n - x^{n-r} - K) \cdot P(x),$$

where P(x) is a polynomial with integral coefficients. Letting x=0 in (10.10), we get: $-c = -K \cdot P(0)$, so that K divides c. Then letting x=1 in (10.10), we get: $1-mc = -K \cdot P(1)$, so that K also divides mc-1. Since m>1, $mc-1 \neq 0$; it thus follows that K=1.

Since K=1, α is a unit in the ring H of algebraic integers. Therefore,

 α^{p-n+mq} is also a unit. But, according to (10.9), c must divide α^{p-n+mq} (in H), since the quantity in the bracket is an algebraic integer. Hence, c is a unit, and must be 1.

This completes the proof of Lemma 10.2.

LEMMA 10.3. If α^p has a canonical form of type (10.4), then n .

Proof. It is clear that n < p; otherwise, α would satisfy an equation of degree less than n.

Now, since K = 1, (10.1) becomes

$$\alpha^n = \alpha^{n-r} + 1.$$

Therefore,

(10.12)
$$\alpha^{n+r} = \alpha^{n-r} + \alpha^r + 1.$$

Suppose first that $n+r \le p < 2n$. That is, p=n+r+s, where $0 \le s < n-r$. The canonical form of α^p can then be obtained by multiplying (10.12) by α^s . Therefore, the terminating exponent in the pure-canonical form of α^p will be less than n-r, contrary to (10.4).

Next, suppose $p \ge 2n$. Squaring (10.11),

(10.13)
$$\alpha^{2n} = \alpha^{2(n-r)} + 2\alpha^{n-r} + 1.$$

Thus, the canonical form of α^p will have at least one coefficient ≥ 2 , since $\alpha^p = \alpha^{p-2n} \cdot \alpha^{2n}$ and all coefficients in the canonical form of α^{p-2n} are nonnegative integers. But this contradicts (10.4), since c=1.

This concludes the proof of Lemma 10.3.

LEMMA 10.4. If there exists an integer p such that α^p is of form (10.4), then $M_{\alpha}(x)$ must be of form (10.2), where p=4t and q=t.

Proof. By Lemma 10.3, we have: p = n + t, where 0 < t < r. From (10.11), we obtain

$$\alpha^p = \alpha^{n-(r-t)} + \alpha^t.$$

Comparing (10.14) with (10.4), we conclude that r-t=q, and t=n-r=n-2q. These relations imply that q=t, n=3t, r=2t, so that (10.1) becomes (10.2). Moreover, p=n+t=4t.

The proof of Theorem 7 is now complete.

11. A class of $M_{\alpha}(x)$ with nonunitary θ/α and $L(\alpha) > 3$. Consider the class of polynomials of form

$$P(x) = x^{(2r-1)q} - 2x^{(2r-2)q} + 2x^{(2r-3)q} - \cdots + 2x^q - 2,$$

where r and q are positive integers, $r \ge 2$. We first note that P(x) is irreducible by Eisenstein's Criterion (cf. [5]). Moreover, from the identity

$$(11.1) (xq + 1) \cdot P(x) = x2rq - x(2r-1)q - 2,$$

we see that P(x) has exactly one positive root α (1 < α < 2). Thus P(x) is the minimal polynomial of α . Finally, from (11.1), we see that (2r-1)q and 2rq form a binary class of g/α .

12. Some unanswered questions. The decomposition g/α has at most a finite number of binary classes, by Theorem 3. However, the authors have no example of an α for which g/α has more than two binary classes; nor do they have an example for which g/α has exactly two binary classes, aside from the case where $M_{\alpha}(x)$ is of the form $x^{3t}-x^{t}-1$ (cf. Theorem 7).

We therefore pose the following questions:

- (1) Does there exist an α for which g/α has more than two binary classes?
- (2) Does there exist an α , other than the case where $M_{\alpha}(x)$ is of the form $x^{3i}-x^{i}-1$, for which θ/α has exactly two binary classes?

We note that if there exists a t_0 such that $Q(x) = x^{3t_0} - x^{t_0} - 1$ is reducible, then the positive root α of Q(x) will induce a decomposition s/α having at least two binary classes: $(t_0, 3t_0)$, $(4t_0, 5t_0)$ (cf. (10.3)). Furthermore, for this case, $M_{\alpha}(x)$ cannot be of the form $x^{3s} - x^s - 1$ ($s < t_0$); otherwise, s/α would have at least four binary classes: (s, 3s), (4s, 5s), $(t_0, 3t_0)$, $(4t_0, 5t_0)$, contradicting Theorem 7.

REFERENCES

- 1. J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. vol. 2 (1935) pp. 250-258.
- 2. E. Hecke, Vorlesungen über die Theorie der algebraichen Zahlen, New York, Chelsea, 1948. cf. Satz 60 p. 78; or H. Pollard, The theory of algebraic numbers, New York, Wiley, 1950. Cf. Lemma 6.1, p. 58.
- 3. A. Gelfond, Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier, Mat. Sb. N.S. vol. 7 (1940) pp. 7-25. Cf. Theorem IV, p. 21.
 - 4. K. Th. Vahlen, Über reductible Binome, Acta Math. vol. 19 (1895) pp. 195-198.
 - 5. B. L. van der Waerden, Modern algebra, vol. 1, New York, Ungar, 1949, p. 74.

CITY COLLEGE,

New York, New York